H1月

'Always our best for God, each other and ourselves'

Holy Family Catholic Primary School

Mathematics
Calculation Policy

At Holy Family School, we aim for pupils to develop a mastery of maths by allowing them to develop a long, deep and secure understanding of mathematical concepts.

We do this by:

- Taking small, manageable steps each lesson to help pupils access more difficult concepts.
- Exposing pupils to a variety of representations for different areas of maths
- Helping pupils make connections, spot patterns and ask questions.
- Encouraging pupils to be clear in their reasoning about mathematics through selfexplanations and written reasoning, using key vocabulary.
- Be fluent in the fundamentals of mathematics, such as number bonds and times tables.

Because we want our pupils to develop a deep understanding of calculation, we believe that children need to understand the structure of the relationships between addition, subtraction, multiplication, and division. This means that children should be introduced to these calculations through practical manipulatives, discussing relationships and looking at representations such as part-whole models or bar models. As children begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, use particular methods that apply to special cases, and learn to interpret and use the signs and symbols involved.

A secure understanding of each calculation allows pupils to develop secure mental methods. Written methods are complementary to mental methods and should not be seen as separate from them. It is important children acquire secure mental methods of calculation and one efficient written method for each calculation, which they know they can rely on when mental methods are not appropriate.

This document identifies progression in calculation strategies rather than specifying which method should be taught in a particular year group.
Children should not be made to go onto the next stage if:

1) they are not ready.
2) they are not confident.

The policy is split into two relationships: additive (addition and subtraction) and multiplicative (multiplication and division). This follows the NCETM's guidance found here: https://www.ncetm.org.uk/teaching-for-mastery/mastery-materials/primary-mastery-professional-development/

H=S

Additive Relationship

(Addition and Subtraction)

Step	Explanation	Examples/representations used
1	Part-part-whole model Children are introduced to the part-part-whole, understanding that wholes can be split in different ways.	Part-part-whole model
2	Introduction to the additive relationship Pupils learn that aggregation is combining parts to make a whole; partitioning is breaking up the whole. 2 addends combined can be represented by the addition symbol (+) whereas partitioning can be represented using the subtraction symbol (-). The equals symbol (=) shows equivalence.	
3	Further introduction to the additive relationship Pupils then learn about addition as augmentation (something is changed) and subtraction as reduction (taking something away). This is learnt through a 'first, then, now' story context e.g. first 4 children were on a bus, then 2 more got on, now there are 8 children. Pupils also begin to learn that these are inverse operations (we can use one to find a missing part)	
4	Basic additive strategies Pupils should learn some useful strategies for mental addition and subtraction, including: - addition is commutative (order does not matter), - number bonds to 10 , - odd and even patterns, adding and subtracting 0 , - doubles and halves.	

HES

Multiplicative Relationship
 (Multiplication and Division)

Calcworkshop.com

Step	Explanation	Examples/ representations used
1	Introuduction to unitising Children are first introduced to multiplication through exploring the concept of unitising - counting in units of two, five or ten.	
2	Exploring equal groups Pupils explore how objects can be arranged in equal groups and how these groups can be described. They connect multiplication to repeated addition, representing groups with both e.g. $2+2+2=2 \times 3$.	Using manipulatives/pictures There are 4 groups of 2 . We can write this as $2+2+2+2$ or 4×2. Bar models5 5 5 There are 3 groups of 5 . We can write this as $5+5+5$ or 3×5
3	Times table knowledge Children begin to build up their times table knowledge through combining counting in units and equal groups. They learn that multiplication is commutative (can be in any order); what happens when a factor is $0 / 1$; and make connections between times tables (e.g. 5/10, $3 / 6$ etc.). As pupils move from year groups, they learn new times tables.	Using manipulatives/pictures $3 \times 2=6$ Tens frames/ arrays Progression of tables
4	Introducing division Children are introduced to division as grouping equally (quotative division) which can be calculated using skip counting. They are then shown sharing problems (partitive division). Pupils use the term dividend \div divisor = quotient. They make the connection between multiplying and dividing through repeated addition/subtraction and missing factor problems e.g. 5 x ? $=15$	Using manipulatives/pictures - grouping Using manipulatives/pictures - sharing $5+5+5=15$ $15 \div 5=3$

8	Short multiplication Pupils are now introduced to a formal written strategy in short multiplication. Firstly, pupils learn to partition into hundreds/tens/ones and multiply these by 1 digit, adding the parts together. This supports moving into column multiplication, applying regrouping. It is important that children add the regrouped ten, rather than multiply (common mistake).	
9	Short division Pupils are now introduced to the short division method (often referred to as the bus stop method). They make links to skip counting in previous steps to solve division problems. Remainders should also be interpreted here too. Pupils learn to partition numbers into hundreds/tens/ones and divide each by the divisor.	

10	X/ \div decimals by whole numbers Pupils develop strategies for multiplying and dividing decimal fractions by whole numbers, using known facts including unitising and x / \div by 10 and 100. Pupils should also know how to use written methods of short multiplication and division with decimals.	Number lines Scaling facts 6×4 ones $=24$ ones 6×4 hundredths $=24$ hundredths $6 \times 0.04=0.24$ $4 \times 25=100 \quad 5 \times 2.5=12.5$ $\times 0.01\|\div 100 \times 0.01\| \div 100$ 0.25 Short multiplication $\begin{array}{r} \\ \\ 4 . \\ \\ \\ \\ \hline\end{array}$5 Short division $0 \cdot 8 \quad 9$ $4 \longdiv { 3 \cdot { } ^ { 3 } 5 6 }$
11	Long multiplication One of the more difficult strategies pupils learn is long multiplication: multiply two numbers with 2 or more digits together. Firstly, pupils need to secure their understanding of multiplying multiples of 10,100 and 1000. They are introduced to the method through partitioning again, which supports their understanding.	Long multiplication $\begin{array}{r} 1462 \\ \times \begin{array}{r} 53 \\ \hline 7.386 \\ \hline 700 \end{array}(1462 \times 3) \end{array}$ 7.3.100 (1462×50)

12	Long division Pupils learn to divide by twodigit divisors. There are 2 methods - long division and short division. Pupils need to be able to work out multiples of 2-digit numbers, and interpret remainders from these. This can often be very challenging for pupils and requires time to master.	Long division			Short division		
		1 311 -1399 		1. As with short division, we position the numbers. We can solve how many groups of 13 we can make. We subtract this, leaving a remainder. We 'the next value to aid the next calculation.	$\begin{array}{r} 1123 \\ 1 3 \longdiv { 4 ^ { 1 } 5 ^ { 2 } 9 ^ { 3 } 9 } \end{array}$		
		$1 3 \longdiv { 1 9 9 9 }$			2. This process continues, subtracting the multiple to give another remainder $(29-26=3)$. nother remainder (29-26 = 3)		
			$13 \downarrow$	Whicheremetiod ${ }^{\text {a }}$			
			29			Whichevermethod	$10+3=13$
			26			$20+6=28$	
			39		divisor. Partioning	$30 \cdot 9=34$	
			$\begin{array}{r}39 \\ -\quad 39 \\ \hline\end{array}$		find these is a method pupils wil need to learn	$40+12=52$	
		1. 10				S0. $15=65$	
						$60.18=78$	
13	Manipulating the multiplicative	Equivalence strategies			mpensation strategies		
	relationship						
	Once pupils have mastered the multiplicative relationship, they can begin to manipulate to aid mental calculation, including using equivalence facts and compensation.						

